- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Klopfenstein, Mia (3)
-
Jeong, Sehee (2)
-
Alaei, Aida (1)
-
Alberts, Mone't (1)
-
Anthony, John_E (1)
-
Avalos, Claudia E. (1)
-
Bendesky, Justin (1)
-
Chesser, Samantha (1)
-
Ellyson, Neale (1)
-
Estridge, Carla E. (1)
-
Fothergill, Jenny W. (1)
-
Guevara, Jaime D. (1)
-
Henry, Michael M. (1)
-
Holland, Emma_K (1)
-
Jankowski, Eric (1)
-
Jones, Chris D. (1)
-
Jones, Matthew L. (1)
-
Kahr, Bart (1)
-
Kim, Min-Woo (1)
-
Kingsbury, Christopher_J (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Alaei, Aida; Mohajerani, Seyed Sepehr; Schmelmer, Ben; Rubio, Thiago I.; Bendesky, Justin; Kim, Min-Woo; Ma, Yichen; Jeong, Sehee; Zhou, Qintian; Klopfenstein, Mia; et al (, ACS Applied Materials & Interfaces)
-
Jankowski, Eric; Ellyson, Neale; Fothergill, Jenny W.; Henry, Michael M.; Leibowitz, Mitchell H.; Miller, Evan D.; Alberts, Mone't; Chesser, Samantha; Guevara, Jaime D.; Jones, Chris D.; et al (, Computational materials science)The predictive capabilities of computational materials science today derive from overlapping advances in simulation tools, modeling techniques, and best practices. We outline this ecosystem of molecular simulations by explaining how important contributions in each of these areas have fed into each other. The combined output of these tools, techniques, and practices is the ability for researchers to advance understanding by efficiently combining simple models with powerful software. As specific examples, we show how the prediction of organic photovoltaic morphologies have improved by orders of magnitude over the last decade, and how the processing of reacting epoxy thermosets can now be investigated with million-particle models. We discuss these two materials systems and the training of materials simulators through the lens of cognitive load theory. For students, the broad view of ecosystem components should facilitate understanding how the key parts relate to each other first, followed by targeted exploration. In this way, the paper is organized in loose analogy to a coarse-grained model: The main components provide basic framing and accelerated sampling from which deeper research is better contextualized. For mentors, this paper is organized to provide a snapshot in time of the current simulation ecosystem and an on-ramp for simulation experts into the literature on pedagogical practice.more » « less
An official website of the United States government
